FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2
نویسندگان
چکیده
Glioblastoma (GBM) is the most aggressive and most lethal brain tumor. As current standard therapy consisting of surgery and chemo-irradiation provides limited benefit for GBM patients, novel therapeutic options are urgently required. Forkhead box M1 (FoxM1) transcription factor is an oncogenic regulator that promotes the proliferation, survival, and treatment resistance of various human cancers. The roles of FoxM1 in GBM remain incompletely understood, due in part to pleotropic nature of the FoxM1 pathway. Here, we show the roles of FoxM1 in GBM stem cell maintenance and radioresistance. ShRNA-mediated FoxM1 inhibition significantly impeded clonogenic growth and survival of patient-derived primary GBM cells with marked downregulation of Sox2, a master regulator of stem cell phenotype. Ectopic expression of Sox2 partially rescued FoxM1 inhibition-mediated effects. Conversely, FoxM1 overexpression upregulated Sox2 expression and promoted clonogenic growth of GBM cells. These data, with a direct binding of FoxM1 in the Sox2 promoter region in GBM cells, suggest that FoxM1 regulates stemness of primary GBM cells via Sox2. We also found significant increases in FoxM1 and Sox2 expression in GBM cells after irradiation both in vitro and in vivo orthotopic tumor models. Notably, genetic or a small-molecule FoxM1 inhibitor-mediated FoxM1 targeting significantly sensitized GBM cells to irradiation, accompanying with Sox2 downregulation. Finally, FoxM1 inhibition combined with irradiation in a patient GBM-derived orthotopic model significantly impeded tumor growth and prolonged the survival of tumor bearing mice. Taken together, these results indicate that the FoxM1-Sox2 signaling axis promotes clonogenic growth and radiation resistance of GBM, and suggest that FoxM1 targeting combined with irradiation is a potentially effective therapeutic approach for GBM.
منابع مشابه
Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells.
BACKGROUND Glioblastoma multiforme (GBM) is the most lethal type of adult brain cancer and performs outrageous growth and resistance regardless of adjuvant chemotherapies, eventually contributing to tumor recurrence and poor outcomes. Considering the common heterogeneity of cancer cells, the imbalanced regulatory mechanism could be switched on/off and contribute to drug resistance. Moreover, th...
متن کاملCMV70-3P miRNA contributes to the CMV mediated glioma stemness and represents a target for glioma experimental therapy
Glioblastoma multiforme (GBM) is a rapidly progressive brain tumor with a median survival of 15-19 months. Therapeutic resistance and recurrence of the disease is attributed to cancer stem cells (CSC). Here, we report that CMV70-3P miRNA encoded by CMV increases GBM CSC stemness. Inhibition of CMV70-3P expression using oligo inhibitors significantly attenuated the ability of primary glioma cell...
متن کاملFOXM1 in sarcoma: role in cell cycle, pluripotency genes and stem cell pathways
FOXM1 is a pro-proliferative transcription factor that promotes cell cycle progression at the G1-S, and G2-M transitions. It is activated by phosphorylation usually mediated by successive cyclin - cyclin dependent kinase complexes, and is highly expressed in sarcoma. p53 down regulates FOXM1 and FOXM1 inhibition is also partly dependent on Rb and p21. Abnormalities of p53 or Rb are frequent in ...
متن کاملAnalysis of SOX2-Regulated Transcriptome in Glioma Stem Cells
INTRODUCTION Glioblastoma is the most malignant brain tumor in adults and is associated with poor survival despite multimodal treatments. Glioma stem-like cells (GSCs) are cells functionally defined by their self-renewal potential and the ability to reconstitute the original tumor upon orthotopic implantation. They have been postulated to be the culprit of glioma chemo- and radio-resistance ult...
متن کاملn-Butylidenephthalide Regulated Tumor Stem Cell Genes EZH2/AXL and Reduced Its Migration and Invasion in Glioblastoma
Glioblastoma (GBM) is one of the most common and aggressive types of brain tumor. Due to its highly recurrent rate and poor prognosis, the overall survival time with this type of tumor is only 20-21 months. Recent knowledge suggests that its recurrence is in part due to the presence of cancer stem cells (CSCs), which display radioresistant, chemoresistant, self-renewal and tumorigenic potential...
متن کامل